Singular Points of Plane Curves

نویسنده

  • C. T. C. Wall
چکیده

ly isomorphic to (C×)r−1 × (C), and hence also to (S1)r−1 × (R), where r = |J | is the number of branches and k = δ(C)− r+1 = 1 2 (μ(C) + 1 − r). The construction of the Jacobian variety J(C̃) of the non-singular curve C̃ in the large is standard in algebraic geometry. There is also a notion of Jacobian of a singular curve C , defined e.g. in [85], which, like the other, is an abelian group. There is a natural exact sequence 0 → O× C → O× J → J(C) → J(C̃) → 0, thus the kernel of the (split) surjection J(C) → J(C̃) can be identified with the direct product over singular points P of C of the local Jacobians.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the enumeration of complex plane curves with two singular points

We study equi-singular strata of curves with two singular points of prescribed types. The method of our previous work [Kerner04] is generalized to this case. This allows to solve the enumerative problem for plane curves with two singular points of linear singularity types. In the general case this reduces the enumerative questions to the problem of collision of the two singular points. The meth...

متن کامل

Plane Maximal Curves

We are interested in non-singular plane curves whose number of rational points attains the Hasse-Weil upper bound. Dedicated with affection to J.W.P. Hirschfeld and G. Korchmáros

متن کامل

Polars of Real Singular Plane Curves

Polar varieties have in recent years been used by Bank, Giusti, Heintz, Mbakop, and Pardo, and by Safey El Din and Schost, to find efficient procedures for determining points on all real components of a given non-singular algebraic variety. In this note we review the classical notion of polars and polar varieties, as well as the construction of what we here call reciprocal polar varieties. In p...

متن کامل

Computing singular points of plane rational curves

We compute the singular points of a plane rational curve, parametrically given, using the implicitization matrix derived from the μ-basis of the curve. It is shown that singularity factors, which are defined and uniquely determined by the elementary divisors of the implicitization matrix, contain all the information about the singular points, such as the parameter values of the singular points ...

متن کامل

Counting Nodes on Rational Plane Curves

In this paper, we consider polynomial parametrized curves in the affine plane k over an algebraically closed field k. Such curves are given by κ : k → k : t 7→ (x(t), y(t)), and may or may not contain singular points. The problem of how many singular points there are is of specific importance to the theory of polynomial knots, as it gives a bound on the degrees necessary to achieve a parametriz...

متن کامل

An algorithm to compute plane algebraic curves

This paper contains an algorithm, implemented in Magma, to compute singular plane algebraic curves. Two Magma functions are given: one computes linear systems of curves with non-ordinary singularities and the other computes a scheme of points such that there is a given degree plane curve with given singularities at these points. Some examples are presented so that the reader can quickly learn h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007